a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
↳ QTRS
↳ DependencyPairsProof
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
MARK(first(X1, X2)) → MARK(X1)
A__ADD(0, X) → MARK(X)
MARK(add(X1, X2)) → MARK(X2)
MARK(dbl(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(recip(X)) → MARK(X)
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
MARK(terms(X)) → MARK(X)
MARK(sqr(X)) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
MARK(sqr(X)) → A__SQR(mark(X))
A__TERMS(N) → MARK(N)
MARK(terms(X)) → A__TERMS(mark(X))
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
MARK(dbl(X)) → A__DBL(mark(X))
A__TERMS(N) → A__SQR(mark(N))
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
MARK(first(X1, X2)) → MARK(X1)
A__ADD(0, X) → MARK(X)
MARK(add(X1, X2)) → MARK(X2)
MARK(dbl(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(recip(X)) → MARK(X)
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
MARK(terms(X)) → MARK(X)
MARK(sqr(X)) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
MARK(sqr(X)) → A__SQR(mark(X))
A__TERMS(N) → MARK(N)
MARK(terms(X)) → A__TERMS(mark(X))
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
MARK(dbl(X)) → A__DBL(mark(X))
A__TERMS(N) → A__SQR(mark(N))
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
MARK(first(X1, X2)) → MARK(X1)
A__ADD(0, X) → MARK(X)
MARK(add(X1, X2)) → MARK(X2)
MARK(dbl(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(recip(X)) → MARK(X)
MARK(terms(X)) → MARK(X)
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
MARK(sqr(X)) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
A__TERMS(N) → MARK(N)
MARK(terms(X)) → A__TERMS(mark(X))
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(add(X1, X2)) → MARK(X2)
MARK(dbl(X)) → MARK(X)
MARK(terms(X)) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
MARK(terms(X)) → A__TERMS(mark(X))
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
Used ordering: Polynomial interpretation [25]:
MARK(first(X1, X2)) → MARK(X1)
A__ADD(0, X) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(recip(X)) → MARK(X)
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
MARK(sqr(X)) → MARK(X)
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
A__TERMS(N) → MARK(N)
POL(0) = 0
POL(A__ADD(x1, x2)) = x2
POL(A__FIRST(x1, x2)) = x2
POL(A__TERMS(x1)) = x1
POL(MARK(x1)) = x1
POL(a__add(x1, x2)) = 1 + x1 + x2
POL(a__dbl(x1)) = 1 + x1
POL(a__first(x1, x2)) = x1 + x2
POL(a__sqr(x1)) = x1
POL(a__terms(x1)) = 1 + x1
POL(add(x1, x2)) = 1 + x1 + x2
POL(cons(x1, x2)) = x1
POL(dbl(x1)) = 1 + x1
POL(first(x1, x2)) = x1 + x2
POL(mark(x1)) = x1
POL(nil) = 0
POL(recip(x1)) = x1
POL(s(x1)) = 1
POL(sqr(x1)) = x1
POL(terms(x1)) = 1 + x1
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__dbl(s(X)) → s(s(dbl(X)))
a__dbl(0) → 0
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__sqr(0) → 0
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__first(0, X) → nil
a__add(s(X), Y) → s(add(X, Y))
mark(dbl(X)) → a__dbl(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(sqr(X)) → a__sqr(mark(X))
mark(terms(X)) → a__terms(mark(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
MARK(first(X1, X2)) → MARK(X1)
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
A__TERMS(N) → MARK(N)
A__ADD(0, X) → MARK(X)
MARK(first(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(recip(X)) → MARK(X)
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
MARK(sqr(X)) → MARK(X)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
MARK(first(X1, X2)) → MARK(X1)
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
MARK(cons(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(recip(X)) → MARK(X)
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
MARK(sqr(X)) → MARK(X)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(first(X1, X2)) → MARK(X1)
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
MARK(cons(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
Used ordering: Polynomial interpretation [25]:
MARK(recip(X)) → MARK(X)
MARK(sqr(X)) → MARK(X)
POL(0) = 1
POL(A__FIRST(x1, x2)) = x1 + x2
POL(MARK(x1)) = 1 + x1
POL(a__add(x1, x2)) = x1 + x2
POL(a__dbl(x1)) = 1
POL(a__first(x1, x2)) = 1 + x1 + x2
POL(a__sqr(x1)) = x1
POL(a__terms(x1)) = 1 + x1
POL(add(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 1 + x1
POL(dbl(x1)) = 1
POL(first(x1, x2)) = 1 + x1 + x2
POL(mark(x1)) = x1
POL(nil) = 1
POL(recip(x1)) = x1
POL(s(x1)) = 1
POL(sqr(x1)) = x1
POL(terms(x1)) = 1 + x1
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__dbl(s(X)) → s(s(dbl(X)))
a__dbl(0) → 0
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__sqr(0) → 0
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__first(0, X) → nil
a__add(s(X), Y) → s(add(X, Y))
mark(dbl(X)) → a__dbl(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(sqr(X)) → a__sqr(mark(X))
mark(terms(X)) → a__terms(mark(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
MARK(recip(X)) → MARK(X)
MARK(sqr(X)) → MARK(X)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
MARK(recip(X)) → MARK(X)
MARK(sqr(X)) → MARK(X)
From the DPs we obtained the following set of size-change graphs: